Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.444
Filtrar
1.
Sci Rep ; 14(1): 7316, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538670

RESUMO

The uterus exhibits intermittent electrophysiological activity in vivo. Although most active during labor, the non-pregnant uterus can exhibit activity of comparable magnitude to the early stages of labor. In this study, two types of flexible electrodes were utilized to measure the electrical activity of uterine smooth muscle in vivo in anesthetized, non-pregnant rats. Flexible printed circuit electrodes were placed on the serosal surface of the uterine horn of six anesthetized rats. Electrical activity was recorded for a duration of 20-30 min. Activity contained two components: high frequency activity (bursts) and an underlying low frequency 'slow wave' which occurred concurrently. These components had dominant frequencies of 6.82 ± 0.63 Hz for the burst frequency and 0.032 ± 0.0055 Hz for the slow wave frequency. There was a mean burst occurrence rate of 0.76 ± 0.23 bursts per minute and mean burst duration of 20.1 ± 6.5 s. The use of multiple high-resolution electrodes enabled 2D mapping of the initiation and propagation of activity along the uterine horn. This in vivo approach has the potential to provide the organ level detail to help interpret non-invasive body surface recordings.


Assuntos
Trabalho de Parto , Miométrio , Feminino , Gravidez , Ratos , Animais , Miométrio/fisiologia , Eletromiografia , Útero/fisiologia , Trabalho de Parto/fisiologia , Eletrodos , Contração Uterina/fisiologia
3.
Am J Physiol Cell Physiol ; 326(4): C1106-C1119, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38344766

RESUMO

Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.


Assuntos
Guanidinas , Lipopolissacarídeos , Miométrio , Canais de Potássio de Domínios Poros em Tandem , Trocador 1 de Sódio-Hidrogênio , Sulfonas , Animais , Feminino , Camundongos , Gravidez , Escherichia coli , Lipopolissacarídeos/toxicidade , Miométrio/metabolismo , RNA Interferente Pequeno/metabolismo , Contração Uterina/fisiologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Trocador 1 de Sódio-Hidrogênio/metabolismo
4.
Med Biol Eng Comput ; 62(3): 791-816, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38008805

RESUMO

The development of a comprehensive uterine model that seamlessly integrates the intricate interactions between the electrical and mechanical aspects of uterine activity could potentially facilitate the prediction and management of labor complications. Such a model has the potential to enhance our understanding of the initiation and synchronization mechanisms involved in uterine contractions, providing a more profound comprehension of the factors associated with labor complications, including preterm labor. Consequently, it has the capacity to assist in more effective preparation and intervention strategies for managing such complications. In this study, we present a computational model that effectively integrates the electrical and mechanical components of uterine contractions. By combining a state-of-the-art electrical model with the Hyperelastic Mass-Spring Model (HyperMSM), we adopt a multiphysics and multiscale approach to capture the electrical and mechanical activities within the uterus. The electrical model incorporates the generation and propagation of action potentials, while the HyperMSM simulates the mechanical behavior and deformations of the uterine tissue. Notably, our model takes into account the orientation of muscle fibers, ensuring that the simulated contractions align with their inherent directional characteristics. One noteworthy aspect of our contraction model is its novel approach to scaling the rest state of the mesh elements, as opposed to the conventional method of applying mechanical loads. By doing so, we eliminate artificial strain energy resulting from the resistance of soft tissues' elastic properties during contractions. We validated our proposed model through test simulations, demonstrating its feasibility and its ability to reproduce expected contraction patterns across different mesh resolutions and configurations. Moving forward, future research efforts should prioritize the validation of our model using robust clinical data. Additionally, it is crucial to refine the model by incorporating a more realistic uterus model derived from medical imaging. Furthermore, applying the model to simulate the entire childbirth process holds immense potential for gaining deeper insights into the intricate dynamics of labor.


Assuntos
Modelos Biológicos , Trabalho de Parto Prematuro , Gravidez , Feminino , Recém-Nascido , Humanos , Útero , Contração Uterina/fisiologia , Potenciais de Ação/fisiologia , Eletromiografia/métodos
5.
Comput Biol Med ; 167: 107697, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37976821

RESUMO

Uterine contractions are routinely monitored by tocodynamometer (TOCO) at late stage of pregnancy to predict the onset of labor. However, TOCO reveals no information on the synchrony and coherence of contractions, which are important contributors to a successful delivery. The electrohysterography (EHG) is a recording of the electrical activities that trigger the local muscles to contract. The spatial-temporal information embedded in multiple channel EHG signals make them ideal for characterizing the synchrony and coherence of uterine contraction. To proceed, contractile time-windows are identified from TOCO signals and are then used to segment out the simultaneously recorded EHG signals of different channels. We construct sample entropy SamEn and Concordance Correlation based feature ψ from these EHG segments to quantify the synchrony and coherence of contraction. To test the effectiveness of the proposed method, 122 EHG recordings in the Icelandic EHG database were divided into two groups according to the time difference between the gestational ages at recording and at delivery (TTD). Both SamEn and ψ show clear difference in the two groups (p<10-5) even when measurements were made 120 h before delivery. Receiver operating characteristic curve analysis of these two features gave AUC values of 0.834 and 0.726 for discriminating imminent labor defined with TTD ≤ 24 h. The SamEn was significantly smaller in women (0.1433) of imminent labor group than in women (0.3774) of the pregnancy group. Using an optimal cutoff value of SamEn to identify imminent labor gives sensitivity, specificity, and accuracy as high as 0.909, 0.712 and 0.743, respectively. These results demonstrate superiority in comparing to the existing SOTA methods. This study is the first research work focusing on characterizing the synchrony property of contractions from the electrohysterography signals. Despite the very limited dataset used in the validation process, the promising results open a new direction to the use of electrohysterography in obstetrics.


Assuntos
Trabalho de Parto , Monitorização Uterina , Gravidez , Feminino , Humanos , Adolescente , Contração Uterina/fisiologia , Útero/fisiologia , Eletromiografia/métodos , Trabalho de Parto/fisiologia , Contração Muscular , Monitorização Uterina/métodos
6.
Eur J Obstet Gynecol Reprod Biol ; 291: 23-28, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806028

RESUMO

OBJECTIVE: Uterine contractions are essential for childbirth, but also for expulsion of the placenta and for limiting postpartum blood loss. Postpartum hemorrhage is associated with almost 25% of the maternal deaths worldwide and the leading cause of maternal death in most low-income countries. Little is known about the physiology of the uterus postpartum, particularly due to the lack of an accurate measurement tool. The primary objective of this pilot study is to explore the potential of using electrohysterography to detect postpartum uterine contractions. If postpartum uterine activity can be objectified, this could contribute to understanding the physiology of the uterus and improve diagnosis and treatment of postpartum hemorrhage. STUDY DESIGN: In this observational study we included women aiming for a vaginal birth in two large maternity clinics in the Netherlands, Amphia Hospital Breda (group A, N2018-0161) and Máxima Medical Center Veldhoven (group B, N17.149). An electrode patch was placed on the maternal abdomen to record real-time electrical uterine activity until one hour postpartum continuously. In group A, the placement of the patch was lower than in group B. For analysis, tracings were divided into five different phases (1: dilatation until start pushing, 2: from start pushing until childbirth, 3: from childbirth until placental expulsion, 4: first hour after placental expulsion and 5: after one hour postpartum). Readability, signal quality and contraction frequency per hour were assessed. Additionally, patient satisfaction was evaluated through a survey. RESULTS: In total 91 pregnant women were included of whom 45 in group A and 46 women in group B. Complete registrations were obtained throughout the five labor phases with very little artefacts or signal loss. The readability of the tracings decreased after childbirth. A significantly better readability was found in tracings where the patch placement was lower on the abdomen for phases 4 and 5. Contraction frequency was highest during phase 2 and decreased towards phase 5. Women rated the satisfaction with electrohysterography as high and mostly did not notice the patch. CONCLUSION: It is possible to detect uterine activity postpartum with electrohysterography. Further investigation is recommended to improve diagnosis and treatment of postpartum hemorrhage.


Assuntos
Hemorragia Pós-Parto , Gravidez , Feminino , Humanos , Hemorragia Pós-Parto/diagnóstico , Projetos Piloto , Placenta , Contração Uterina/fisiologia , Período Pós-Parto
7.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373263

RESUMO

The mechanism of maintaining myometrial contractions during labor remains unclear. Autophagy has been reported to be activated in laboring myometrium, along with the high expression of Golgi reassembly stacking protein 2 (GORASP2), a protein capable of regulating autophagy activation. This study aimed to investigate the role and mechanism of GORASP2 in uterine contractions during labor. Western blot confirmed the increased expression of GORASP2 in laboring myometrium. Furthermore, the knockdown of GORASP2 in primary human myometrial smooth muscle cells (hMSMCs) using siRNA resulted in reduced cell contractility. This phenomenon was independent of the contraction-associated protein and autophagy. Differential mRNAs were analyzed using RNA sequencing. Subsequently, KEGG pathway analysis identified that GORASP2 knockdown suppressed several energy metabolism pathways. Furthermore, reduced ATP levels and aerobic respiration impairment were observed in measuring the oxygen consumption rate (OCR). These findings suggest that GORASP2 is up-regulated in the myometrium during labor and modulates myometrial contractility mainly by maintaining ATP production.


Assuntos
Trabalho de Parto , Miométrio , Gravidez , Feminino , Humanos , Miométrio/metabolismo , Trabalho de Parto/metabolismo , Contração Uterina/fisiologia , RNA Interferente Pequeno/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo
8.
Am J Obstet Gynecol ; 228(5S): S1192-S1208, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164493

RESUMO

Organ-level models are used to describe how cellular and tissue-level contractions coalesce into clinically observable uterine contractions. More importantly, these models provide a framework for evaluating the many different contraction patterns observed in laboring patients, ideally offering insight into the pitfalls of currently available recording modalities and suggesting new directions for improving recording and interpretation of uterine contractions. Early models proposed wave-like propagation of bioelectrical activity as the sole mechanism for recruiting the myometrium to participate in the contraction and increase contraction strength. However, as these models were tested, the results consistently revealed that sequentially propagating waves do not travel long distances and do not encompass the gravid uterus. To resolve this discrepancy, a model using 2 mechanisms, or a "dual model," for organ-level signaling has been proposed. In the dual model, the myometrium is recruited by action potentials that propagate wave-like as far as 10 cm. At longer distances, the myometrium is recruited by a mechanotransduction mechanism that is triggered by rising intrauterine pressure. In this review, we present the influential models of uterine function, highlighting their main features and inconsistencies, and detail the role of intrauterine pressure in signaling and cervical dilation. Clinical correlations demonstrate the application of organ-level models. The potential to improve the recording and clinical interpretation of uterine contractions when evaluating labor is discussed, with emphasis on uterine electromyography. Finally, 7 questions are posed to help guide future investigations on organ-level signaling mechanisms.


Assuntos
Trabalho de Parto , Contração Uterina , Gravidez , Feminino , Humanos , Contração Uterina/fisiologia , Mecanotransdução Celular , Trabalho de Parto/fisiologia , Miométrio/fisiologia , Útero/fisiologia
9.
Am J Obstet Gynecol ; 228(5S): S1209-S1221, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164494

RESUMO

Normal labor and delivery are dependent on the presence of regular and effective contractions of the uterine myometrium. The mechanisms responsible for the initiation and maintenance of adequate and synchronized uterine activity that are necessary for labor and delivery result from a complex interplay of hormonal, mechanical, and electrical factors that have not yet been fully elucidated. Monitoring uterine activity during term labor and in suspected preterm labor is an important component of obstetrical care because cases of inadequate and excessive uterine activity can be associated with substantial maternal and neonatal morbidity and mortality. Inadequate labor progress is a common challenge encountered in intrapartum care, with labor dystocia being the most common indication for cesarean deliveries performed during labor. Hereafter, an accurate assessment of uterine activity during labor can assist in the management of protracted labor by diagnosing inadequate uterine activity and facilitating the titration of uterotonic medications before a trial of labor is prematurely terminated. Conversely, the ability to diagnose unwanted or excessive uterine activity is also critical in cases of threatened preterm labor, tachysystole, or patients undergoing a trial of labor after cesarean delivery. Knowledge of uterine activity in these cases may guide the use of tocolytic medications or raise suspicion of uterine rupture. Current diagnostic capabilities are less than optimal, hindering the medical management of term and preterm labor. Currently, different methods exist for evaluating uterine activity during labor, including manual palpation, external tocodynamometry, intrauterine pressure monitoring, and electrical uterine myometrial activity tracing. Legacy uterine monitoring techniques have advantages and limitations. External tocodynamometry is the most widespread tool in clinical use owing to its noninvasive nature and its ability to time contractions against the fetal heart rate monitor. However, it does not provide information regarding the strength of uterine contractions and is limited by signal loss with maternal movements. Conversely, the intrauterine pressure catheter quantifies the strength of uterine contractions; however, its use is limited by its invasiveness, risk for complications, and limited additive value in all but few clinical scenarios. New monitoring methods are being used, such as electrical uterine monitoring, which is noninvasive and does not require ruptured membranes. Electrical uterine monitoring has yet to be incorporated into common clinical practice because of lack of access to this technology, its high cost, and the need for appropriate training of clinical staff. Further work needs to be done to increase the accessibility and implementation of this technique by experts, and further research is needed to implement new practical and useful methods. This review describes current clinical tools for uterine activity assessment during labor and discusses their advantages and shortcomings. The review also summarizes current knowledge regarding novel technologies for monitoring uterine contractions that are not yet in widespread use, but are promising and could help improve our understanding of the physiology of labor, delivery, and preterm labor, and ultimately enhance patient care.


Assuntos
Trabalho de Parto , Trabalho de Parto Prematuro , Monitorização Uterina , Gravidez , Feminino , Adolescente , Recém-Nascido , Humanos , Contração Uterina/fisiologia , Monitorização Uterina/métodos , Trabalho de Parto Prematuro/diagnóstico , Monitorização Fisiológica/métodos
10.
J Midwifery Womens Health ; 68(5): 575-580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114664

RESUMO

INTRODUCTION: Highly sensitive, external uterine electromyography (EMG) measures myometrial electrical activity and is noninvasive compared with the clinical intrauterine pressure catheter. Most experimental studies have measured EMG in 30-minute epochs, limiting the utility of this instrumentation in intrapartum clinical practice. To test proof of concept, surface uterine EMG contraction activity was continuously collected throughout the first stage of labor from healthy women at term gestation with (n = 3) and without (n = 1) epidural or combined spinal-epidural analgesia for a maximal length of 11 hours and 24 minutes. METHODS: EMG activity was recorded concurrently with tocodynamometer (toco) signals, using a pair of electrodes on the left and right sides of the maternal umbilicus with grounds attached to both hips of the reclining woman in labor. The preamplifier cutoff frequency settings were appropriate to monitor smooth muscle contraction in labor, with the analog high-pass filter set at 0.05 Hz and the low-pass filter at 1.50 Hz. Signals were sampled at 100 Hz, transmitted to a computer, and visualized by Chart 4.2 software. EMG data from epochs at baseline, during the pre-epidural fluid bolus and at the 60-minute post-epidural test dose, and at 3, 5, 6, and 8 cm dilatation were analyzed for burst power spectrum peak frequency (Hz), burst power spectrum amplitude (mV2 ), and burst duration (seconds). RESULTS: Uterine EMG contractile bursts were preceded and followed by a stable baseline and coincided with toco contractions. Movement artifacts were negligible, and large movement artifacts were easily distinguishable. The EMG bursts and toco contractions remained clearly identifiable, even when one woman without epidural analgesia stood beside the bed laboring for approximately 10 minutes. Burst spectral components fell within the expected 0.34-to-1.00 Hz range for term labor. DISCUSSION: High-quality data demonstrate that EMG instrumentation effectively and accurately measures uterine contraction parameters across the first stage of term labor.


Assuntos
Trabalho de Parto , Gravidez , Feminino , Humanos , Eletromiografia , Trabalho de Parto/fisiologia , Contração Uterina/fisiologia , Útero/fisiologia , Primeira Fase do Trabalho de Parto
11.
Nat Commun ; 14(1): 1198, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918533

RESUMO

Electromyometrial imaging (EMMI) was recently developed to image the three-dimensional (3D) uterine electrical activation during contractions noninvasively and accurately in sheep. Herein we describe the development and application of a human EMMI system to image and evaluate 3D uterine electrical activation patterns at high spatial and temporal resolution during human term labor. We demonstrate the successful integration of the human EMMI system during subjects' clinical visits to generate noninvasively the uterine surface electrical potential maps, electrograms, and activation sequence through an inverse solution using up to 192 electrodes distributed around the abdomen surface. Quantitative indices, including the uterine activation curve, are developed and defined to characterize uterine surface contraction patterns. We thus show that the human EMMI system can provide detailed 3D images and quantification of uterine contractions as well as novel insights into the role of human uterine maturation during labor progression.


Assuntos
Trabalho de Parto , Gravidez , Feminino , Humanos , Animais , Ovinos , Eletromiografia/métodos , Útero/diagnóstico por imagem , Útero/fisiologia , Contração Uterina/fisiologia , Imageamento Tridimensional/métodos
13.
Cell Rep ; 40(10): 111318, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070698

RESUMO

Current strategies to manage preterm labor center around inhibition of uterine myometrial contractions, yet do not improve neonatal outcomes as they do not address activation of inflammation. Here, we identify that during human labor, activated oxytocin receptor (OTR) reprograms the prostaglandin E2 receptor, EP2, in the pregnant myometrium to suppress relaxatory/Gαs-cAMP signaling and promote pro-labor/inflammatory responses via altered coupling of EP2 from Gαq/11 to Gαi/o. The ability of EP2 to signal via Gαi/o is recapitulated with in vitro OT and only following OTR activation, suggesting direct EP2-OTR crosstalk. Super-resolution imaging with computational modeling reveals OT-dependent reorganization of EP2-OTR complexes to favor conformations for Gαi over Gαs activation. A selective EP2 ligand, PGN9856i, activates the relaxatory/Gαs-cAMP pathway but not the pro-labor/inflammatory responses in term-pregnant myometrium, even following OT. Our study reveals a mechanism, and provides a potential therapeutic solution, whereby EP2-OTR functional associations could be exploited to delay preterm labor.


Assuntos
Trabalho de Parto , Trabalho de Parto Prematuro , Feminino , Humanos , Recém-Nascido , Trabalho de Parto/metabolismo , Miométrio/metabolismo , Gravidez , Receptores de Ocitocina , Contração Uterina/fisiologia
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4590-4594, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086166

RESUMO

Prenatal fetal monitoring, which can monitor the growth and health of the fetus, is vital for pregnant women before delivery. During pregnancy, it is essential to classify whether the fetus is abnormal, which helps physicians carry out early intervention to avoid fetal heart hypoxia and even death. Fetal heart rate and uterine contraction signals obtained by fetal heart monitoring equipment are essential to estimate fetal health status. In this paper, we pre-process the obtained data set and enhance them using Hermite interpolation on the abnormal classification in the samples. We use the 1D-CNN and GRU hybrid models to extract the abstract features of fetal heart rate and uterine contraction signals. Several evaluation metrics are used for evaluation, and the accuracy is 96 %, while the sensitivity is 95 %, and the specificity is 96 %. The experiments show the effectiveness of the proposed method, which can provide physicians and users with more stable, efficient, and convenient diagnosis and decision support.


Assuntos
Monitorização Fetal , Frequência Cardíaca Fetal , Feminino , Coração Fetal/fisiologia , Humanos , Gravidez , Contração Uterina/fisiologia
15.
Reproduction ; 164(4): 169-181, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36018772

RESUMO

In brief: Various etiologies can cause uterine myometrium contraction, which leads to preterm birth. This study demonstrates a new functional relationship between the Ras-related C3 botulinum toxin substrate 1 (RAC1) and uterine myometrium contraction in preterm birth. Abstract: Preterm birth (PTB) is a public health issue. The World Health Organization has recommended the use of tocolytic treatment to inhibit preterm labour and improve pregnancy outcomes. Intrauterine inflammation is associated with preterm birth. RAC1 can modulate inflammation in different experimental settings. In the current study, we explored whether RAC1 can modulate spontaneous uterine myometrium contraction in a mouse model of lipopolysaccharide (LPS)-induced intrauterine inflammation. Subsequently, we recorded uterine myometrium contraction and examined uterine Rac1 expression in a mouse model of preterm birth and a case in pregnant women by Western blotting analysis. We also measured progesterone levels in the blood serum of mice. Murine myometrium was obtained 12 h post LPS treatment. Human myometrium was obtained at the time of caesarean section. We found that in the LPS-treated group of mice, uterine myometrium contraction was enhanced, protein levels and activation of RAC1 were increased and serum progesterone levels were decreased. The protein levels of RAC1 were also increased in preterm birth and in pregnant women. NSC23766, a RAC1 inhibitor, attenuated uterine myometrium contraction and diminished RAC1 activation and COX-2 expression. Furthermore, silencing of RAC1 suppressed cell contraction and COX-2 expression in vitro. In conclusion, our results suggested that RAC1 may play an important role in modulating uterine myometrium contraction. Consequently, intervening with RAC1 represents a novel strategy for the treatment of preterm birth.


Assuntos
Miométrio , Neuropeptídeos/metabolismo , Nascimento Prematuro , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Cesárea , Ciclo-Oxigenase 2/metabolismo , Feminino , Humanos , Recém-Nascido , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Miométrio/metabolismo , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/metabolismo , Progesterona/metabolismo , Contração Uterina/fisiologia
16.
Physiol Meas ; 43(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35896091

RESUMO

Objective.The slow wave (SW) of the electrohysterogram (EHG) may contain relevant information on the electrophysiological condition of the uterus throughout pregnancy and labor. Our aim was to assess differences in the SW as regards the imminence of labor and the directionality of uterine myoelectrical activity.Approach. The SW of the EHG was extracted from the signals of the Icelandic 16-electrode EHG database in the bandwidth [5, 30] mHz and its power, spectral content, complexity and synchronization between the horizontal (X) and vertical (Y) directions were characterized by the root mean square (RMS), dominant frequency (domF), sample entropy (SampEn) and maximum cross-correlation (CCmax) of the signals, respectively. Significant differences between parameters at time-to-delivery (TTD) ≤7 versus >7 days and between the horizontal versus vertical directions were assessed.Main results.The SW power significantly increased in both directions as labor approached (TTD ≤ 7d versus >7d (mean±SD):RMSx = 0.12 ± 0.10 versus 0.08 ± 0.06 mV;RMSy = 0.12 ± 0.09 versus 0.08 ± 0.05 mV), as well as the dominant frequency in the horizontal direction (domFx= 9.1 ± 1.3 versus 8.5 ± 1.2mHz) and the synchronization between both directions (CCmax= 0.44 ± 0.16 versus 0.36 ± 0.14). Furthermore, its complexity decreased in the vertical direction (SampEny= 6.13·10-2 ± 8.7·10-3versus 6.50·10-2 ± 8.3·10-3), suggesting a higher cell-to-cell electrical coupling. Whereas there were no differences between the SW features in both directions in the general population, statistically significant differences were obtained between them in individuals in many cases.Significance.Our results suggest that the SW of the EHG is related to bioelectrical events in the uterus and could provide objective information to clinicians in challenging obstetric scenarios.


Assuntos
Trabalho de Parto , Monitorização Uterina , Adolescente , Eletrodos , Eletromiografia/métodos , Fenômenos Eletrofisiológicos , Feminino , Humanos , Gravidez , Contração Uterina/fisiologia , Monitorização Uterina/métodos , Útero/fisiologia
17.
J Mech Behav Biomed Mater ; 131: 105250, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35490512

RESUMO

During a normal vaginal delivery, the muscle cells propagate electrical signals throughout the uterine wall, resulting in uterine contractions. However, uncoordinated uterine activity may disturb the uterine contractions pattern and negatively impact fetal and maternal health. Some of the abnormalities identified by the specialists are excessively short resting intervals and tachysystole. This work aims to investigate the influence of abnormal uterine activity in terms of maximum principal stress distribution and collagen fibers stretch in the uterine tissue during vaginal delivery with (i) excessively short resting intervals without changing the contraction time, and (ii) tachysystole (contraction and reduced resting times). These patterns are compared with a normal uterine contraction pattern. To achieve our aims, a biomechanical model was developed, including finite element models of the uterus and the fetus, and an electro-chemo-mechanical constitutive model. Generally, the excessively short resting intervals exhibit higher average maximum principal stresses during the contraction and resting stages, lower average fibers stretch values in the longitudinal direction and higher stretch in the circumferential direction. On the other hand, the tachysystole exhibit generally lower stress values during the uterine contraction and higher stress values during the resting stages, higher stretch in the longitudinal direction, and lower stretch in the circumferential direction.


Assuntos
Contração Uterina , Útero , Parto Obstétrico , Feminino , Humanos , Gravidez , Contração Uterina/fisiologia , Útero/fisiologia
18.
IEEE Trans Biomed Eng ; 69(12): 3728-3738, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35604992

RESUMO

OBJECTIVE: Preterm birth is the leading cause of morbidity and mortality involving over 10% of infants. Tools for timely diagnosis of preterm birth are lacking and the underlying physiological mechanisms are unclear. The aim of the present study is to improve early assessment of pregnancy progression by combining and optimizing a large number of electrohysterography (EHG) features with a dedicated machine learning framework. METHODS: A set of reported EHG features are extracted. In addition, novel cross and multichannel entropy and mutual information are employed. The optimal feature set is selected using a wrapper method according to the accuracy of the leave-one-out cross validation. An annotated database of 74 EHG recordings in women with preterm contractions was employed to test the ability of the proposed method to recognize the onset of labor and the risk of preterm birth. Difference between using the contractile segments only and the whole EHG signal was compared. RESULTS: The proposed method produces an accuracy of 96.4% and 90.5% for labor and preterm prediction, respectively, much higher than that reported in previous studies. The best labor prediction was observed with the contraction segments and the best preterm prediction achieved with the whole EHG signal. Entropy features, particularly the newly-employed cross entropy contribute significantly to the optimal feature set for both labor and preterm prediction. SIGNIFICANCE: Our results suggest that changes in the EHG, particularly the regularity, might manifest early in pregnancy. Single-channel and cross entropy may therefore provide relevant prognostic opportunities for pregnancy monitoring.


Assuntos
Nascimento Prematuro , Gravidez , Recém-Nascido , Feminino , Humanos , Entropia , Nascimento Prematuro/diagnóstico , Eletromiografia/métodos , Útero/fisiologia , Aprendizado de Máquina , Contração Uterina/fisiologia
19.
Ann Diagn Pathol ; 57: 151902, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35123151

RESUMO

Myometrial morphology and myometrial physiology have been considered to be separate entities; however, observations of myometrial morphology and associated dysfunctions suggest a relationship between myometrial morphology and myometrial physiology that deserves further exploration. Although myometrial electrical activity can be monitored by electrohysterogram, the association of increased myometrial contractions with an increase in electrical activity (due to an increase in gap junctions) is typically not evaluated. Although the association of increased myometrial contractions with increase in pain can be monitored by tocometry and intrauterine pressure catheters, respectively, this is generally not done in the non-pregnant uteri. Although standard morphologic evaluations routinely include evaluation with special stains and immunohistochemistry in other organ systems, such as skeletal and cardiac muscle, these evaluations are not standard or routine for myometrium in hysterectomies. The purpose of this review is to discuss non-neoplastic myometrial histology, with consideration of the potential value of using tools to measure variations in myometrial physiology, in order to reliably correlate myometrial histology with myometrial function (and dysfunction).


Assuntos
Miométrio , Contração Uterina , Feminino , Humanos , Histerectomia , Miométrio/patologia , Contração Uterina/fisiologia
20.
Am J Obstet Gynecol ; 227(2): 267.e1-267.e20, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101408

RESUMO

BACKGROUND: During the second stage of labor, the maternal pelvic floor muscles undergo repetitive stretch loading as uterine contractions and strenuous maternal pushes combined to expel the fetus, and it is not uncommon that these muscles sustain a partial or complete rupture. It has recently been demonstrated that soft tissues, including the anterior cruciate ligament and connective tissue in sheep pelvic floor muscle, can accumulate damage under repetitive physiological (submaximal) loads. It is well known to material scientists that this damage accumulation can not only decrease tissue resistance to stretch but also result in a partial or complete structural failure. Thus, we wondered whether certain maternal pushing patterns (in terms of frequency and duration of each push) could increase the risk of excessive damage accumulation in the pelvic floor tissue, thereby inadvertently contributing to the development of pelvic floor muscle injury. OBJECTIVE: This study aimed to determine which labor management practices (spontaneous vs directed pushing) are less prone to accumulate damage in the pelvic floor muscles during the second stage of labor and find the optimum approach in terms of minimizing the risk of pelvic floor muscle injury. STUDY DESIGN: We developed a biomechanical model for the expulsive phase of the second stage of labor that includes the ability to measure the damage accumulation because of repetitive physiological submaximal loads. We performed 4 simulations of the second stage of labor, reflecting a directed pushing technique and 3 alternatives for spontaneous pushing. RESULTS: The finite element model predicted that the origin of the pubovisceral muscle accumulates the most damage and so it is the most likely place for a tear to develop. This result was independent of the pushing pattern. Performing 3 maternal pushes per contraction, with each push lasting 5 seconds, caused less damage and seemed the best approach. The directed pushing technique (3 pushes per contraction, with each push lasting 10 seconds) did not reduce the duration of the second stage of labor and caused higher damage accumulation. CONCLUSION: The frequency and duration of the maternal pushes influenced the damage accumulation in the passive tissues of the pelvic floor muscles, indicating that it can influence the prevalence of pelvic floor muscle injuries. Our results suggested that the maternal pushes should not last longer than 5 seconds and that the duration of active pushing is a better measurement than the total duration of the second stage of labor. Hopefully, this research will help to shed new light on the best practices needed to improve the experience of labor for women.


Assuntos
Parto Obstétrico , Segunda Fase do Trabalho de Parto , Animais , Parto Obstétrico/métodos , Fadiga , Feminino , Humanos , Segunda Fase do Trabalho de Parto/fisiologia , Diafragma da Pelve/fisiologia , Gravidez , Ovinos , Contração Uterina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...